The Structure of Hexasodium Bis[μ-(phosphato- O, O^{\prime})-pyrophosphatothorate(IV)]

By Biserka Kojić-Prodić
'Rudjer Bošković' Institute, PO Box 1016, 41001 Zagreb, Yugoslavia
M. ŠLJukić
Department of Chemistry, Faculty of Engineering, 81000 Titograd, Yugoslavia
and Živa Ružić-Toroš
‘Rudjer Bošković’ Institute, PO Box 1016, 41001 Zagreb, Yugoslavia

(Received 10 March 1981; accepted 3 June 1981)

Abstract

Crystals of $\mathrm{Na}_{6}\left[\mathrm{Th}\left(\mathrm{PO}_{4}\right)\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)\right]_{2}$ are triclinic, space group P, with $a=8.734$ (2), $b=8.931$ (2), $c=$ 6.468 (1) $\AA, \quad \alpha=93.33(3), \quad \beta=108.29(4), \quad \gamma=$ $110 \cdot 10(4)^{\circ}, U=442.0 \AA^{3}, D_{m}=4.264, D_{c}=4.281$ $\mathrm{Mg} \mathrm{m}{ }^{-3}$. The structure was refined to $R=0.040$ for 2475 observed reflexions $[I>2 \sigma(I) \mid$. A binuclear unit of Th polyhedra with a double bridge of two phosphato O atoms occurs in the structure. The Th atom exhibits ninefold coordination in the shape of a tricapped trigonal prism. Th-O distances range from 2.309 (8) to 2.785 (7) \AA. The pyrophosphato group is non-linear with $\mathrm{P}-\mathrm{O}-\mathrm{P} 129.4(4)^{\circ}$. The terminal $\mathrm{P}-\mathrm{O}$ bonds range from 1.424 (7) to 1.559 (7) \AA. Bridging $\mathrm{P}-\mathrm{O}$ distances are 1.621 (8) and 1.630 (8) \AA. The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bond angles are in the range 103.3 (4) to $117.5(4)^{\circ}$. In the discrete PO_{4} tetrahedron $\mathrm{P}-\mathrm{O}$ bond lengths vary from 1.475 (7) to 1.577 (7) \AA and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bond angles from $102 \cdot 0(4)$ to $116 \cdot 1(4)^{\circ}$. The polyhedra around Na form a three-dimensional network. The dimers of Th polyhedra fit in the holes among the Na polyhedra forming an extremely close-packed structure.

Introduction

A novel type of phosphate containing a discrete phosphato group and a pyrophosphato group was prepared by thermal synthesis. $\mathrm{Th}\left(\mathrm{PO}_{3}\right)_{4}$ and NaPO_{3} in molar ratio 2:10 were heated in a platinum crucible at 1093 K for 24 h , then a $1: 1$ molar mixture of ThO_{2} and $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ was added and heated again at 1093 K for 24 h . The furnace was slowly cooled to 773 K (50 K per day) in order to obtain single crystals suitable for X-ray work. The crystals were separated from the matrix by dissolving the soluble substances in boiling water. The chemical formula was deduced from analytical data.

0567-7408/82/010067-05\$01.00

Experimental

The space group was determined from Weissenberg photographs recorded with $\mathrm{Cu} K a$ radiation. The intensities were collected from a spherically shaped crystal, radius 0.047 mm , on a Philips PW 1100 computer-controlled four-circle diffractometer in the $\omega-2 \theta$ scan mode with graphite-monochromated Mo $K a$ radiation in the range $5<2 \theta<64^{\circ} .2475$ observed reflexions having $I>2 \sigma(I)$ were used in the calculations. The intensities were corre ted for background, Lorentz and polarization effects and for absorption $\mid \mu($ Mo $K \alpha)=26.56 \mathrm{~mm}^{-1} \mid$ (Bond, 1967).

Structure determination and refinement

The Patterson map was successfully solved in $P \overline{1}$, implying a binuclear unit formed across the centre of symmetry. A Fourier synthesis based on the coordinates of the Th atom revealed the positions of three Na , three P and eleven O atoms. Refinement was by full-matrix least squares minimizing $\sum W\left|\left|F_{o}\right|-\right| F_{c} \|^{2}$. A weighting scheme of type 3 from the XRAY system (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976) was used. [$W=W_{1} . W_{2}$, where $W_{1}=1$ for $\left|F_{o}\right|$ ≤ 30 and $W_{1}=30 /\left|F_{o}\right|$ for $\left|F_{o}\right|>30 ; W_{2}=1$ for $\sin \theta$ ≥ 0.4 and $W_{2}=(\sin \theta) / 0.4$ for $\sin \theta<0.4$.

Isotropic refinement led to $R=0.059$. In the final cycles of refinement a scale factor, the atomic coordinates and anisotropic thermal parameters (163 variables in all) were refined. Anisotropic thermal parameters are in the usual range: maximum values U_{11} $=0.037$ (3), $U_{22}=0.045$ (3) and $U_{33}=0.061$ (3) \AA^{2} for $\mathrm{Na}(3)$ were obtained. The final $R=0.040$ and $R_{w}=$ 0.048 for 2475 reflexions having $I>2 \sigma(I)$.

Scattering factors given by Cromer \& Mann (1968) were used. Anomalous-dispersion corrections were included for Na, P and Th (Cromer \& Liberman, © 1982 International Union of Crystallography

Table 1. Final atomic coordinates $\left(\times 10^{4}\right.$, for $\left.\mathrm{Th} \times 10^{5}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{2}\right)$
$U_{\text {eq }}$ is derived from the anisotropic thermal parameters by

$$
U_{\text {eq }}=\frac{1}{3} \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	U_{cu}
	x	y		
Th	$33402(2)$	$29080(2)$	$7553(3)$	$0 \cdot 64(1)$
$\mathrm{Na}(1)$	$-125(5)$	$1311(5)$	$3616(7)$	$2 \cdot 60(13)$
$\mathrm{Na}(2)$	$1781(6)$	$5632(5)$	$3998(7)$	$2 \cdot 45(13)$
$\mathrm{Na}(3)$	$5847(7)$	$10346(7)$	$2930(11)$	$4.80(20)$
$\mathrm{P}(1)$	$8631(2)$	$1274(2)$	$-1448(3)$	$0 \cdot 96(6)$
$\mathrm{P}(2)$	$7737(2)$	$3582(2)$	$896(3)$	$1 \cdot 05(6)$
$\mathrm{P}(3)$	$3781(3)$	$2970(2)$	$5926(3)$	$0.97(6)$
$\mathrm{O}(1)$	$7249(8)$	$-51(7)$	$-797(11)$	$1 \cdot 38(18)$
$\mathrm{O}(2)$	$10349(8)$	$1625(7)$	$98(11)$	$1 \cdot 50(18)$
$\mathrm{O}(3)$	$8571(10)$	$1018(10)$	$-3750(11)$	$2 \cdot 37(24)$
$\mathrm{O}(4)$	$8182(7)$	$2870(7)$	$-1124(10)$	$1 \cdot 22(17)$
$\mathrm{O}(5)$	$8927(9)$	$3518(8)$	$2947(10)$	$1 \cdot 86(20)$
$\mathrm{O}(6)$	$7948(8)$	$5282(8)$	$450(13)$	$2 \cdot 03(20)$
$\mathrm{O}(7)$	$5902(8)$	$2501(7)$	$732(11)$	$1 \cdot 65(18)$
$\mathrm{O}(8)$	$2570(8)$	$3341(8)$	$4056(10)$	$1 \cdot 51(19)$
$\mathrm{O}(9)$	$4984(9)$	$2470(9)$	$4924(11)$	$2 \cdot 07(21)$
$\mathrm{O}(10)$	$4667(8)$	$4449(7)$	$7714(10)$	$1 \cdot 11(18)$
$\mathrm{O}(11)$	$2762(8)$	$1670(7)$	$7068(10)$	$1 \cdot 37(18)$

1970). The calculations were carried out on the Univac 1100 computer at the University Computing Centre in Zagreb with the XRAY system (Stewart et al., 1976). The atomic coordinates are listed in Table 1.*

Description and discussion of the structure

Coordination around the thorium atom

Polyhedra around two Th atoms related by the centre of symmetry form a dimer sharing $\mathrm{O}(10)^{\mathrm{ii}}$ and $O(10)^{\mathrm{v}}$ with a $\mathrm{Th} \cdots \mathrm{Th}^{\mathrm{iv}}$ distance of 4.2520 (4) \AA (Fig. 1). The Th atom is coordinated by nine O atoms from four pyrophosphato groups $\left[\mathrm{O}(1)^{\mathrm{iii}} ; \mathrm{O}(2)^{\mathrm{i}} ; \mathrm{O}(6)^{\mathrm{iv}}\right.$; $O(7)]$ and three phosphato tetrahedra $[O(8), O(9)$; $\mathrm{O}(10)^{\mathrm{ii}}, \mathrm{O}(11)^{\mathrm{ii}} ; \mathrm{O}(10)^{\mathrm{v}}$] (Figs. 1 and 2). Two pyrophosphato groups related by the centre of symmetry act as bidentate bridging ligands to Th and $\mathrm{Th}^{\mathrm{iv}}$, coordinating $O(6)$ and $O(7)$ to each Th atom (Fig. 1). Isolated $P(3)$ tetrahedra repeated by the centre of symmetry form two bridges with $\mathrm{O}(10)^{\mathrm{ii}}$ and $\mathrm{O}(10)^{\mathrm{v}}$ between Th and $\mathrm{Th}^{\mathrm{iv}}$. However the $\mathrm{P}(3)$ tetrahedron also acts as a bidentate cyclic ligand coordinating $\mathrm{O}(8), \mathrm{O}(9)$ and $\mathrm{O}(10)^{\mathrm{ii}}, \mathrm{O}(11)^{\mathrm{ii}}$ to the same Th atom. Thus $\mathrm{O}(10)^{\mathrm{ii}}$ and $\mathrm{O}(10)^{\mathrm{v}}$ are shared by both polyhedra (Figs. 1 and 2). The coordination polyhedron around Th can be described as either a tricapped trigonal prism (Fig. 1) with $O(2)^{\mathrm{i}}, \mathrm{O}(9)$ and $\mathrm{O}(10)^{\mathrm{ii}}$ centring rec-

[^0]

Fig. 1. Projection of the structure along z, showing the coordination of the Th dimer.

Fig. 2. Projection of the structure along x. The role of the $\mathrm{P}(3)$ tetrahedra: bidentate cyclic $\left[\mathrm{O}(8), \mathrm{O}(9) ; \mathrm{O}(10)^{1 i}, \mathrm{O}(11)^{\text {in }}\right]$, bridging $\left[\mathrm{O}(10)^{\mathrm{n}}, \mathrm{O}(10)^{\mathrm{v}}\right]$. Dimers of Th polyhedra are connected by $\mathrm{P}(3)$ tetrahedra along z.

Table 2. Interatomic distances (\AA) and angles (${ }^{\circ}$)
Within the Th polyhedron

$\mathrm{Th}-\mathrm{O}(1)^{\text {iii }}$	2.427 (6)	$\mathrm{O}(2)^{\mathrm{i}} \cdots \mathrm{O}(8)$	$2 \cdot 656$ (7)
$\mathrm{Th}-\mathrm{O}(2)^{\text {i }}$	2.347 (6)	$\mathrm{O}(2)^{\mathrm{i}} \ldots \mathrm{O}(11)^{\text {ii }}$	$3 \cdot 290$ (11)
$\mathrm{Th}-\mathrm{O}(6)^{\text {iv }}$	$2 \cdot 309$ (8)	$\mathrm{O}(6)^{\mathrm{i}} \cdots \mathrm{O}(8)$	$3 \cdot 191$ (10)
$\mathrm{Th}-\mathrm{O}(7)$	2.391 (8)	$\mathrm{O}(6)^{\mathrm{iv}} \ldots \mathrm{O}(10)^{\mathrm{ii}}$	2.664 (8)
$\mathrm{Th}-\mathrm{O}(8)$	2.479 (7)	$\mathrm{O}(6)^{\text {in }} \cdots \mathrm{O}(10)^{\text {²}}$	2.955 (12)
$\mathrm{Th}-\mathrm{O}(9)$	2.750 (7)	$\mathrm{O}(6)^{\mathrm{n}} \cdots \mathrm{O}(11)^{\mathrm{ii}}$	3.413 (11)
$\mathrm{Th}-\mathrm{O}(10)^{\text { }}$	2.325 (5)	$\mathrm{O}(7) \cdots \mathrm{O}(9)$	3.058 (11)
$\mathrm{Th}-\mathrm{O}(10)^{\text {if }}$	2.785 (7)	$\mathrm{O}(7) \cdots \mathrm{O}(10)^{\prime}$	3.099 (10)
$\mathrm{Th}-\mathrm{O}(11)^{\text {if }}$	2.392 (6)	$\mathrm{O}(7) \cdots \mathrm{O}(10)^{i}$	2.892 (10)
$\mathrm{O}(1)^{\mathrm{iii}} \cdots \mathrm{O}(2)^{\mathrm{i}}$	2.844 (11)	$\mathrm{O}(7) \cdots \mathrm{O}(11)^{i i}$	2.829 (8)
$\mathrm{O}(1)^{\mathrm{iii}} \cdots \mathrm{O}(7)$	2.882 (9)	$\mathrm{O}(8) \cdots \mathrm{O}(9)$	2.408 (11)
$\mathrm{O}(1)^{\text {ii }} \cdots \mathrm{O}(8)$	3.594 (10)	$\mathrm{O}(8) \cdots \mathrm{O}(10)^{\prime}$	$3 \cdot 122$ (9)
$\mathrm{O}(1)^{\mathrm{iii}} \ldots \mathrm{O}(9)$	2.961 (8)	$\mathrm{O}(9) \cdots \mathrm{O}(10)^{\prime}$	$3 \cdot 297$ (10)
$\mathrm{O}(1)^{\mathrm{iii}} \ldots \mathrm{O}(11)^{\mathrm{ii}}$	2.884 (9)	$\mathrm{O}(10)^{\mathrm{ii}} \cdots \mathrm{O}(10)^{\prime}$	2.871 (9)
$\mathrm{O}(2)^{\mathrm{i}} \cdots \mathrm{O}(6)^{\text {iv }}$	2.755 (9)	$\mathrm{O}(10)^{\mathrm{ij}} \cdots \mathrm{O}(11)^{\mathrm{ii}}$	2.389 (8)
$\mathrm{O}(1)^{\text {iii }}-\mathrm{Th}-\mathrm{O}(11)^{i i}$	$73 \cdot 5$ (2)	$\mathrm{O}(8)-\mathrm{Th}-\mathrm{O}(6)^{\text {iv }}$	83.5 (3)
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Th}-\mathrm{O}(1)^{\mathrm{iii}}$	73.1 (2)	$\mathrm{O}(8)-\mathrm{Th}-\mathrm{O}(9)$	54.5 (2)
$\mathrm{O}(2) \mathrm{i}-\mathrm{Th}-\mathrm{O}(6)^{\mathrm{iv}}$	72.6 (2)	$\mathrm{O}(8)-\mathrm{Th}-\mathrm{O}(10)^{\mathrm{ii}}$	144.2 (2)
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Th}-\mathrm{O}(8)$	66.7 (2)	$\mathrm{O}(8)-\mathrm{Th}-\mathrm{O}(10)^{\text {c }}$	81.0 (2)
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Th}-\mathrm{O}(9)$	104.9 (2)	$\mathrm{O}(8)-\mathrm{Th}-\mathrm{O}(11)^{\mathrm{ii}}$	154.3 (2)
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Th}-\mathrm{O}(10)^{\text {ii }}$	123.8 (2)	$\mathrm{O}(9)-\mathrm{Th}-\mathrm{O}(1)^{\text {iii }}$	69.4 (2)
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Th}-\mathrm{O}(10)^{\text {v }}$	132.7 (3)	$\mathrm{O}(9)-\mathrm{Th}-\mathrm{O}(6)^{\text {in }}$	$132 \cdot 2$ (3)
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Th}-\mathrm{O}(11)^{\mathrm{ii}}$	88.0 (2)	$\mathrm{O}(9)-\mathrm{Th}-\mathrm{O}(10)^{\text {ii }}$	131.3 (2)
$\mathrm{O}(7)-\mathrm{Th}-\mathrm{O}(1)^{\text {iii }}$	73.5 (2)	$\mathrm{O}(9)-\mathrm{Th}-\mathrm{O}(10)^{\prime}$	80.6 (2)
$\mathrm{O}(7)-\mathrm{Th}-\mathrm{O}(11)^{\mathrm{ii}}$	72.5 (2)	$\mathrm{O}(10)^{-}-\mathrm{Th}-\mathrm{O}(6)^{\text {i }}$	$70 \cdot 2$ (2)
$\mathrm{O}(7)-\mathrm{Th}-\mathrm{O}(8)$	126.4 (2)	$\mathrm{O}(10)^{\mathrm{ii}}-\mathrm{Th}-\mathrm{O}(1)^{\text {iii }}$	121.4 (2)
$\mathrm{O}(7)-\mathrm{Th}-\mathrm{O}(9)$	72.6 (2)	$\mathrm{O}(10)^{\text {ii }}-\mathrm{Th}-\mathrm{O}(6)^{\text {i }}$	70.2 (3)
$\mathrm{O}(7)-\mathrm{Th}-\mathrm{O}(10)^{\mathrm{ii}}$	67.4 (2)	$\mathrm{O}(10)^{-}-\mathrm{Th}-\mathrm{O}(10)^{\mathrm{ii}}$	67.7 (2)
$\mathrm{O}(7)-\mathrm{Th}-\mathrm{O}(10)^{\text {c }}$	$82 \cdot 2$ (2)	$\mathrm{O}(10)^{\mathrm{ii}}-\mathrm{Th}-\mathrm{O}(11)^{\text {ii }}$	54.3 (2)
$\mathrm{O}(8)-\mathrm{Th}-\mathrm{O}(1)^{\mathrm{iii}}$	94.2 (2)	$\mathrm{O}(11)^{\text {ii }}-\mathrm{Th}-\mathrm{O}(6)^{\text {i }}$	93.1 (3)

$\mathrm{Na} \cdots \mathrm{O}$ distances $\leq 3.048 \AA$

$\mathrm{Na}(1) \cdots \mathrm{O}(2)^{\text {i }}$	2.452 (9)	$\mathrm{Na}(3) \cdots \mathrm{O}(1)^{\text {in }}$	2.531 (9)
$\mathrm{Na}(1) \cdots \mathrm{O}(3)^{\text {iii }}$	$2 \cdot 840$ (12)	$\mathrm{Na}(3) \cdots \mathrm{O}(3)^{\text {xii }}$	2.509 (9)
$\mathrm{Na}(1) \cdots \mathrm{O}(3)^{x}$	2.310 (10)	$\mathrm{Na}(3) \cdots \mathrm{O}(7)^{\text {i }}$	2.454 (10)
$\mathrm{Na}(1) \cdots \mathrm{O}(5)^{\text {i }}$	2.399 (10)	$\mathrm{Na}(3) \cdots \mathrm{O}(7)^{\text {in }}$	2.961 (8)
$\mathrm{Na}(1) \cdots \mathrm{O}(8)$	2.344 (7)	$\mathrm{Na}(3) \cdots \mathrm{O}(9)^{\text {vi }}$	2.672 (12)
$\mathrm{Na}(1) \cdots \mathrm{O}(11)$	2.697 (7)	$\mathrm{Na}(3) \cdots \mathrm{O}(9)^{\prime}$	2.926 (10)
$\mathrm{Na}(1) \cdots \mathrm{O}(11)^{\text {vii }}$	2.757 (7)	$\mathrm{Na}(3) \cdots \mathrm{O}(11)^{\text {ix }}$	2.495 (11)
$\mathrm{Na}(2) \cdots \mathrm{O}(4)^{\mathrm{in}}$	2.355 (8)	$\mathrm{Na}(2) \cdots \mathrm{O}(6)^{\text {iv }}$	3.048 (10)
$\mathrm{Na}(2) \cdots \mathrm{O}(5)^{*}$	2.403 (10)	$\mathrm{Na}(2) \cdots \mathrm{O}(8)$	$2 \cdot 372$ (10)
$\mathrm{Na}(2) \cdots \mathrm{O}(5)^{\text {i }}$	2.407 (7)	$\mathrm{Na}(2) \cdots \mathrm{O}(9)^{\prime}$	2.584 (8)

Symmetry code

(i)	$x-1$,	y,	z	(vii)	$-x$,	$-y$,
(ii)	x,	y,	$z-1$	(viii)	x,	y,
(iii)	$1-x$,	$-y$,	$-z$	(ix)	$1-x$,	$-y$,
(in	$1-z$					
(iv)	$1-x$,	$1-y$,	$-z$	(x)	$x-1$,	y,
(v)	$1-x, 1-y$,	$1-z$	(xi)	$-x$,	$1-y$,	$1-z$
(vi)	$x, y+1$,	z	(xii)	x,	$1+y$,	$1+z$

tangular faces or a monocapped square antiprism with $\mathrm{O}(9)$ centring a square face (Fig. 1). If the $\mathrm{Th}-\mathrm{O}$ distances are compared with the sum of the ionic radii ($2.42 \AA$) (Pauling, 1960) three categories of bond distances in the Th polyhedron are evident: (a) 2.309 (8)- 2.392 (6) \AA which are less than $2.42 \AA$, (b) 2.427 (6) and 2.479 (7) \AA, and (c) 2.750 (7) and 2.785 (7) \AA which are considerably larger than the sum of the ionic radii (Table 2). In the structure of $\mathrm{K}\left|\mathrm{Th}_{2}\left(\mathrm{PO}_{4}\right)_{3}\right|$, with ninefold coordination of Th , the values of the $\mathrm{Th}-\mathrm{O}$ distances range from 2.26 (4) to 2.66 (3) Å (Matković, Prodić, Šljukić \& Peterson, 1968). The Th-O distances in the present structure are in the wide range $2.309(8)-2.785$ (7) \AA. A larger scattering of $\mathrm{Th}-\mathrm{O}$ distances can be expected for high coordination numbers. In $\left|\mathrm{Th}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right|_{2}$, with elevenfold coordination, $\mathrm{Th}-\mathrm{O}$ distances are $\mathrm{Th}-\mathrm{O}(\mathrm{OH}) 2.36$ (3) (in bridge); $\mathrm{Th}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right) 2.53$ (3); $\mathrm{Th}-\mathrm{O}\left(\mathrm{NO}_{3}\right) 2 \cdot 65$ (6) A (Johansson, 1968). A further example of eleven coordination is the structure of $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4} .5 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{Th}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ distances in the range $2.438-2.473(10) \AA$ and $\mathrm{Th}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ distances 2.528 (10)-2.618 (10) \AA (Ueki, Zalkin \& Templeton, 1966). For twelve coordination, the lengthening of the $\mathrm{Th}-\mathrm{O}$ distances is more pronounced. In the structure of $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]_{2}\left[\mathrm{Th}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\right]$, with icosahedral coordination of Th , $\mathrm{Th}-\mathrm{O}$ distances of 2.5 and $2.8 \AA$ were observed (Molodkin \& Ivanova, 1966). Long Th-O distances, $2 \cdot 50-2.80(5) \AA$, occurred also in the structure of $\left|\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \| \mathrm{Th}\left(\mathrm{NO}_{3}\right)_{6}\right| .2 \mathrm{H}_{2} \mathrm{O}$ with icosahedrally coordinated Th (Šćavničar \& Prodić, 1965).

In the structure of the title compound there are two very long distances: $\mathrm{Th}-\mathrm{O}(9) \quad 2.750$ (7), and $\mathrm{Th}-\mathrm{O}(10)^{\text {ii }} 2.785$ (7) \AA (Table 2). If these O atoms are excluded from the Th coordination sphere a mono-
capped trigonal prism is obtained. However, preference was given to ninefold coordination since it occurs more frequently than sevenfold for Th. The Th...Th distance of $4 \cdot 2520$ (4) \AA appearing in the dimer is somewhat longer than the 3.988 (3) \AA found in $\left[\left.\mathrm{Th}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right|_{2}\right.$ with $\mathrm{Th}-\mathrm{OH}-\mathrm{Th}$ bridges (Johansson, 1968). The shortest Th…Th contact outside the dimer is 5.7182 (3) \AA.

Pyrophosphato and phosphato groups

Both pyrophosphato and discrete phosphato groups are involved in the coordination around Th. In the pyrophosphato group two terminal O atoms $\mid \mathrm{O}(3)$, $\mathrm{O}(5)]$ and a bridging atom $[\mathrm{O}(4) \mid$ are not coordinated to Th. A pyrophosphato group forms a bridge in the Th dimer $[\mathrm{O}(6), \mathrm{O}(7)]$ but also connects Th dimers along x [through $\mathrm{O}(2)]$ and y [though $\mathrm{O}(1)]$ forming an infinite sheet (Fig. 1). The isolated $\mathrm{P}(3)$ tetrahedron acts as a bidentate cyclic ligand $\left[\mathrm{O}(8), \mathrm{O}(9) ; \mathrm{O}(10)^{\mathrm{i}}, \mathrm{O}(11)^{\mathrm{i}}\right]$ forming two bridges between Th and $\mathrm{Th}^{\mathrm{iv}}$ by $\mathrm{O}(10)^{\mathrm{ii}}$ and $O(10)^{v}$. It also joins Th polyhedra in the z direction (Fig. 2). The pyrophosphato group is non-linear with the $\mathrm{P}(1)-\mathrm{O}(4)-\mathrm{P}(2)$ angle $129.4(4)^{\circ}$. The terminal $\mathrm{P}-\mathrm{O}$ bonds in both tetrahedra range from 1.424 (7) to 1.559 (7) \AA. Bridging $\mathrm{P}-\mathrm{O}$ distances $\mathrm{P}(1)-\mathrm{O}(4)$ and $\mathrm{P}(2)-\mathrm{O}(4)$ are 1.621 (8) and $1.630(8) \AA$, respectively. The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bond angles in the pyrophosphato group are in the range 103.3(4)117.5 (4) ${ }^{\circ}$. In the $\mathrm{P}(3)$ tetrahedron $\mathrm{P}-\mathrm{O}$ bond lengths vary from 1.475 (7) to 1.577 (7) \AA and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bond angles from $102 \cdot 0$ (4) to $116 \cdot 1(4)^{\circ}$. Bond lengths and angles in the pyrophosphato and phosphato groups are in accord with literature data given for PO_{4} tetrahedral geometry (Corbridge, 1974).

Sodium environment

The $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ polyhedra repeated by the operation of a centre of symmetry form dimers whereas the $\mathrm{Na}(3)$ polyhedra are joined into an infinite chain along z (Fig. 3). The coordination spheres around $\mathrm{Na}(1)$ and $\mathrm{Na}(3)$ are composed of seven O atoms in an arrangement which can be roughly described as a monocapped trigonal prism. $\mathrm{Na}(2)$ has a distorted octahedral environment. Two discrete PO_{4} tetrahedra and three pyrophosphato groups are involved in the coordination of each Na .
$\mathrm{Na}(1)$ and $\mathrm{Na}(1)^{\text {vii }}$ at a distance of 3.055 (7) \AA form their dimer with the common face formed by $\mathrm{O}(3)^{\mathrm{iii}}$, $O(3)^{x}, O(11)$ and $O(11)^{\text {vii }}$. Six O atoms are disposed at the apices of a distorted trigonal prism with $\mathrm{Na} \cdots \mathrm{O}$ distances $2 \cdot 310(10)-2 \cdot 840(12) \AA$; a seventh neighbour, $\mathrm{O}(2)^{\mathrm{i}}$, at 2.452 (9) \AA is beyond the quadrilateral face.
$\mathrm{Na}(2)$ and $\mathrm{Na}(2)^{\mathrm{xi}}$ at a distance of 3.594 (7) \AA form their dimer with common edge $O(5)^{i}-O(5)^{v}$. The

Fig. 3. Projection of the structure along x, illustrating the environments around $\mathrm{Na}(1), \mathrm{Na}(2)$ and $\mathrm{Na}(3)$. The $\mathrm{Na}(1)$ and $\mathrm{Na}(1)^{\mathrm{vi}}$ polyhedra form a dimer sharing the face $\left|\mathrm{O}(3)^{\text {iii }}, \mathrm{O}(3)^{\mathrm{x}}, \mathrm{O}(11), \mathrm{O}(11)^{\text {rii }}\right| . \mathrm{Na}(2)$ and $\mathrm{Na}(2)^{\text {xi }}$ distorted octahedra share the edge $\left|\mathrm{O}(5)^{i}-\mathrm{O}(5)^{\text {i }}\right|$. To avoid overlapping of the $\mathrm{Na}(1)$ and $\mathrm{Na}(3)$ polyhedra, a partial illustration |for $\mathrm{Na}(1)$ at y $=0$ and for $\mathrm{Na}(3)$ at $y=1 \mid$ is given. The $\mathrm{Na}(3)$ polyhedra with common edge $\left|O(9)^{\text {s }}, O(9)^{\text {si }}\right|$ and two common corners $\left|\mathrm{O}(7)^{\mathrm{iv}} . \mathrm{O}(7)^{\mathrm{vi} \mid}\right|$ form an infinite chain along 2 . The chain of $\mathrm{Na}(3)$ polyhedra is linked with $\mathrm{Na}(1)$ dimers (connecting line indicated $\cdot-\cdot-\cdot$). The $\mathrm{Na}(2)$ dimer joins these chains along \cdot.

Fig. 4. Projection of the structure along x. Dimers of Th polyhedra fit in the holes appearing among the Na polyhedra. The Na and Th polyhedra share O atoms as follows: $\mathrm{Na}(1)$ and Th $\mathrm{O}(2)^{i}-\mathrm{O}(8)$, indicated by dotted linel: $\mathrm{Na}(2)$ and Th $\mathrm{O}(6)^{i n}-\mathrm{O}(8)$, indicated by $\cdots-\cdots-1: \mathrm{Na}(3)$ and Th $1 \mathrm{O}(7), \mathrm{O}(9), \mathrm{O}(1)^{\mathrm{liII}}$, shaded, and also $\mathrm{O}(7)-\mathrm{O}(11)^{\mathrm{i}}$, indicated by
$\mathrm{Na} \cdots \mathrm{O}$ distances range from 2.355 (8) to 3.048 (10) \AA. A seventh neighbour, $O(7)^{\mathrm{v}}$, at 3.345 (7) \AA no longer belongs to the $\mathrm{Na}(2)$ environment, so that a geometrical environment analogous to $\mathrm{Na}(1)$ and $\mathrm{Na}(3)$ does not occur.

The $\mathrm{Na}(3)$ polyhedra related by a centre of symmetry, sharing an edge defined by $O(9)^{\vee}$ and $O(9)^{v i}$, are joined to the $\mathrm{Na}(3)$ polyhedra translated along z through two common corners $\left[\mathrm{O}(7)^{\mathrm{iv}}\right.$ and $\mathrm{O}(7)^{\mathrm{vi}} \mid$. Thus an infinite ribbon of $\mathrm{Na}(3)$ polyhedra is formed (Fig. 3). $\mathrm{Na}(3)$ is surrounded by six O atoms located at the corners of a distorted trigonal prism with $\mathrm{Na} \cdots \mathrm{O}$ distances from 2.454 (10) to 2.961 (8) \AA; a seventh oxygen, $\mathrm{O}(3)^{\text {xii }}$, centring the vertical prism face is at 2.509 (9) \AA.

Crystal packing

The polyhedra around $\mathrm{Na}(1)$ and $\mathrm{Na}(3)$ share the $\mathrm{O}(3)^{\mathrm{iii}}-\mathrm{O}(11)$ edge. Hence, the $\mathrm{Na}(1)$ dimer units are attached to an infinite chain of $\mathrm{Na}(3)$ polyhedra in the $x z$ plane. The $\mathrm{Na}(1)$ and $\mathrm{Na}(2)$ polyhedra have the common edge $\mathrm{O}(5)^{\mathrm{i}}-\mathrm{O}(8)$. The $\mathrm{Na}(2)$ and $\mathrm{Na}(3)$ polyhedra share the corner occupied by $O(9)^{v}$. The $\mathrm{Na}(2)$ dimer units connect these chains along y in a three-dimensional framework of Na polyhedra (Fig. 3). The Na and Th polyhedra share elements as follows: $\mathrm{Na}(1)$ and Th with the common edge $\mathrm{O}(2)^{i}-\mathrm{O}(8)$; $\mathrm{Na}(2)$ and Th with the common edge $\mathrm{O}(6)^{\mathrm{iv}}-\mathrm{O}(8)$; $\mathrm{Na}(3)$ and Th with the common face $\mathrm{O}(7), \mathrm{O}(9), \mathrm{O}(1)^{\text {iii }}$
and also with the common edge $\mathrm{O}(7)-\mathrm{O}(11)^{\mathrm{ii}}$. Thus the dimers of Th polyhedra fit in the holes among the Na polyhedra forming an extremely close-packed structure (Fig. 4).

References

Bond, W. L. (1967). International Tables for X-ray Crystallography. Vol. II, pp. 295-298. Birmingham: Kynoch Press.
Corbridge, D. E. C. (1974). The Structural Chemistry' of Phosphorus, p. 262. Amsterdam: Elsevier.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phy's. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24. 321-324.
Johansson, G. (1968). Acta Chem. Scand. 22, 389-398.
Matković, B., Prodić, B., Šljukić, M. \& Peterson, S. W. (1968). Croat. Chem. Acta, 40, 147-161.

Molodim, A. K. \& Ivanova. O. M. (1966). Zh. Neorg. Khim. 11, 2456-2477.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell Univ. Press.
Šćavničar, S. \& Prodić, B. (I965). Acta Cryst. 18, 698-702.
Stewart, J. M., Machin, P. A.. Dickinson, C., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Ueki, T., Zalkin, A. \& Templeton, D. H. (1966). Acta Cryst. 20, 836-841.

Untersuchungen an Polyhalogeniden. 2.* Cesiumdicyanotriiodid

Von Roland Fröhlich und Karl-Friedrich Tebbe
Institut für Anorganische Chemie der Universität zu Köln, Greinstrasse 6, D-5000 Köln 41, Bundesrepublik Deutschland
(Eingegangen am 16. Februar 1981; angenommen am 5. Juni 1981)

Abstract

$\mathrm{Cs}\left|\mathrm{I}(\mathrm{ICN})_{2}\right|, \mathrm{C}_{2} \mathrm{CsI}_{3} \mathrm{~N}_{2}$, is orthorhombic, space group Pmmn (No. 59) with $a=16.494$ (4), $b=6.726$ (1), $c=4.592$ (1) $\AA, V=509.4 \AA^{3}, D_{c}-3.688 \mathrm{Mg} \mathrm{m}^{3}$, $Z=2$. The compound may be prepared in aqueous solution by addition of two molecules of ICN to one

[^1]formula unit of CsI. The crystal structure has been solved by direct methods from diffractometer data and refined by full-matrix least squares to $R=0.057$ for 512 reflections. The structure can be interpreted as a package of pentahalide-analogous anions $\left[\mathrm{I}(\mathrm{ICN})_{2}\right]^{-}$ and Cs^{+}cations in layers. The anionic groups of symmetry $m m 2$ are angular with $\varphi\left(\mathrm{I}-\mathrm{I}^{-}-\mathrm{I}\right)=$ $123 \cdot 12(5)^{\circ}$ and $d\left(\mathrm{I}^{-}-\mathrm{I}\right)=3.306(1) \AA$. The distance $d(\mathrm{I}-\mathrm{C})=2.08(2) \AA$ is lengthened, the distance (C) 1982 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36275 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Teil 1: Tebbe (1980).

 0567-7408/82/010071-05\$01.00

